CCBS- Continuous Control of Binary Oxygen Sensor, Enhancing Control and Efficiency

Author:

Vijaykumar Srikanth1,Karpin Andrew

Affiliation:

1. Bosch Limited

Abstract

<div class="section abstract"><div class="htmlview paragraph">Oxygen sensors are used in combustion engines to determine the air/fuel ratio. Binary type lambda sensors offer high precision determination of lambda values close to stoichiometric combustion conditions (λ=1). While the wide band oxygen sensor allows for measurement of oxygen concentration over a wide range (λ = 0.7 to 16). While it is beneficial to use wide band sensors for all applications, binary sensors are preferred in 2Wheelers and Off road applications due to cost and size of sensor. Additional ASIC (application specific integrated circuit) and complex control software in engine control unit is not required to run a binary sensor. CCBS (continuous control of binary type sensor) allows a specific Bosch binary type sensor to linearize the sensor characteristic line and allow for closed loop fuel operation between λ =0.85 to 0.98. This results in a wider closed loop lambda operation during component protection zone of the engine. The sensor also, showed acceptable usage for catalyst monitoring in a lean operation zone. This software-based solution does not require any additional hardware on the vehicle, thus providing all the benefits at a reduced cost compared to a wide band sensor. This can be applied to various market segments including off-road, on-road, small, and large engines. Improved precision using active catalyst monitoring results in cost savings of catalysts and reduced calibration efforts. The software platform is flexible allowing the ability to choose binary control or continuous control or use a combination of both. Overall, the CCBS technology represents a significant improvement in precision control for engines and provides a practical solution for optimizing engine performance while reducing costs.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3