Experimental and Numerical Analysis of an Outward Opening Injector Pintle Dynamics

Author:

Eguiluz Rodrigo1,Stover Luke1,Powell Tommy1,Costa Tiago1,Kopache Alexander1,Hartman Peter1,Hwang Joonsik2,Shkolnik Alexander1

Affiliation:

1. LiquidPiston Inc.

2. Mississippi State University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Direct injection strategies have been successfully used on spark ignited internal combustion engines for improving performance and reducing emissions. Among the different technologies available, outward opening injectors seem to have found their place in renewable applications running on gaseous fuels, including natural gas or hydrogen, as well as in a few specific liquid fuel applications.</div><div class="htmlview paragraph">In order to understand the key operating principles of these devices, their limitations and the resulting sprays, it is necessary to accurately describe the pintle dynamics. The pintle’s relative position with respect to the injector body defines the internal flow geometry and therefore the injection rates and spray characteristics.</div><div class="htmlview paragraph">In this paper both numerical and experimental investigations of the dynamics of an outward opening injector pintle have been carried out. The injector average flow rates and instantaneous pintle position have been experimentally measured at a variety of pressures and injection durations using air as the working fluid. In addition to the experimental measurements, the injector internals were thoroughly measured and characterized so that a high-fidelity numerical model could be assembled.</div><div class="htmlview paragraph">A multi-physics model featuring a simplified electromagnetic representation of the injector solenoid and a spring-mass-damper system for the pintle dynamics integrated with a 1-dimensional computational fluid dynamics description of the internal flow using two-way fluid-structure-interaction coupling was developed in the commercial software GT-Suite. The model is capable of accurately predicting the pintle position and average flow rates, at a variety of conditions, using working fluid pressure and injector current profile as the only inputs.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3