Transfer Learning-Based Neural Network for Natural Frequency Prediction of Linear Dynamic Systems

Author:

Mammily Sreejesh1

Affiliation:

1. Xitadel CAE Technologies

Abstract

<div class="section abstract"><div class="htmlview paragraph">The prediction of natural frequencies is a crucial aspect of engineering design and analysis. Traditional methods involve finite element analysis (FEA) which is a standard method for calculating natural frequencies of dynamic systems. For each design variant, FEA calculation can be time-consuming and computationally expensive. In this study, we propose a novel method for predicting the natural frequencies of design variants using transfer learning and artificial neural networks (ANN).</div><div class="htmlview paragraph">The proposed method involves the use of FEA to generate the stiffness and mass matrices of the brake disc, which are then used as inputs to the neural network. However, the prediction can become tedious when there is a change in the design. To address this, we employ transfer learning followed by linear regression using a design variant of the previous structure as test data. The neural network learns through transfer learning and fine-tunes its outputs using regression for final frequency prediction.</div><div class="htmlview paragraph">The proposed approach can predict the natural frequencies of new structures efficiently without compromising the quality of the outcome, even when the degree of freedom changes due to design alterations. The effectiveness of this method is demonstrated by calculating frequencies of brake disc with different material property, and the results are compared with FEA to measure its accuracy. The results indicate that this method can accurately predict the natural frequencies of new design variants with high prediction accuracy and computational efficiency. This method has potential applications in engineering design and analysis, especially for structures that require iterations to finalize design and where there is a need to calculate the dynamic characteristics of the system.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3