Characterization and Modeling of Anisotropic Fracture of Advanced High-Strength Steel Sheets

Author:

Hu Jun1,Pan Hao2,Pavlina Erik3,Thomas Grant1

Affiliation:

1. Cleveland-Cliffs Inc.

2. University of Central Florida

3. Cliffs Steel Corporation

Abstract

<div class="section abstract"><div class="htmlview paragraph">As an engineering approach of balanced complexity and accuracy, the Generalized Incremental Stress-State dependent damage Model (GISSMO) in LS-DYNA<sup>®</sup> has now been widely adopted by the automotive industry to predict metallic materials’ fracture occurrences in both forming and crashworthiness simulations. Calibration of the nominal GISSMO is typically based on material characterization data along a certain representative material orientation. Nevertheless, many rolled or extruded metallic materials, such as advanced high-strength steel (AHSS) sheets, exhibit accentuated anisotropic fracture behavior, even though, notably, some of these materials show comparatively weak anisotropic plasticity in the meantime. Accordingly, in this work, the deformation and fracture behavior of a selected AHSS grade, Q&amp;P980 steel, was first characterized based on a series of mechanical experiments under simple shear, uniaxial tension, plane strain, and equi-biaxial tension conditions. Then, material models were calibrated based on the plasticity and fracture data. Two fracture models, either stress- or strain-based, were applied to fit the fracture loci of the target material, which then could be directly implemented into the material cards in LS-DYNA<sup>®</sup>. Particularly, to simulate the anisotropic fracture behavior of the target material, an extended GISSMO material card (eGISSMO) was introduced and highlighted in this work. Unlike the nominal GISSMO, the eGISSMO integrated the different anisotropic fracture loci and damage accumulation along three material orientations (longitudinal, diagonal, and transverse) into a single material card. In the subsequent validation based on a customized three-point-bending (3PB) testing setup on hat-section samples, only the finite element (FE) model using the calibrated eGISSMO successfully simulated the anisotropic fracture bifurcation observed in the actual experiments.</div></div>

Publisher

SAE International

Subject

Artificial Intelligence,Mechanical Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3