Development of Digital Shearography for Dual Sensitivity Simultaneous Measurement Using Carrier Frequency Spatial Phase Shift Technology

Author:

Zheng Xiaowan1,Guo Bicheng1,Fang Siyuan1,Sia Bernard2,Yang Lianxiang1

Affiliation:

1. Oakland University

2. US Army Ground Vehicle Systems Center

Abstract

<div class="section abstract"><div class="htmlview paragraph">Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view. It then obtains the phase information of each interferogram by separating them from the spectrum using the Fourier Transform (FT) method. The challenge of using this method is that the phase information can partially overlap on the spectrogram, resulting in a bad phase map. This paper presents a new idea for separating the phase information on the spectrogram. The new idea adjusts the shearing directions, leading to complete separation of the spectrums of the two images, e.g. one in the horizontal direction and the other in the vertical direction. The phase information of each interferogram can then be excavated by windowing the corresponding spectrum and taking the inverse Fourier Transform. In digital shearography, the phase information is directly related to gradient of surface deformation; thus, gradient of surface deformation with different fields of view, also called dual sensitivity, can be obtained. The principle of this method will be described and demonstrated by experiment results.</div></div>

Publisher

SAE International

Subject

Artificial Intelligence,Mechanical Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3