Machine-Learning-Based Fault Detection in Electric Vehicle Powertrains Using a Digital Twin

Author:

Dettinger Falk,Jazdi Nasser,Weyrich Michael,Brandl Lukas,Reuss Hans-Christian,Pecha Urs,Parspour Nejila,Li Shiqing,Frey Michael,Gauterin Frank,Nägele Ann-Therese,Lüntzel Vitus Alexander,Sax Eric

Abstract

<div class="section abstract"><div class="htmlview paragraph">Electric Vehicles are subject to effects that lead to more or less rapid degradation of functions. This can cause hazards for the drivers and uninvolved road participants. For this reason, the must be detected and mitigated, to maintain the vehicle function even in critical situations until a safe operating mode can be established. This publication presents an intelligent digital twin, located in the edge and connected with an electric vehicle via 5G. That can improve the operation of electrified vehicles by enabling the online detection of abnormal situations in the electrified powertrain and vehicle dynamics. Its core component is the fault detection system, which is implemented based on a 1-Nearest Neighbor algorithm. It is initially trained on synthetic data, generated in CarMaker for real-world powertrain issues such as demagnetization and open-/short-switch failures, using detailed mathematical models. In this context 139 simulations were performed with three different velocities (10 km/h, 18 km/h and unlimited) in sum. Thereby 36 variables were recorded in each simulation. This leads to a total number of 953,534 data points. Out of this, 77 % are used for training and 23 % are used for validation. Based on the detected fault, a self-healing strategy is applied. Therefore, a look-up table, also located in the edge, is used to limit the motor torque to predefined levels. During the evaluation two major results are shown. The fault is well detected after a short detection time, but situations like accelerating or braking shows a similar signal behavior like the considered faults, leading to false positives. The effect of a fault can be mitigated by an online self-healing approach located in the edge in nearly real time. For connected vehicles, it seems realistic to apply an online digital twin enabling the fault detection and mitigation to the edge.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3