Ammonia Emissions from Combustion in Gasoline Engines

Author:

Bajwa Abdullah1,Shankar Varun1,Leach Felix1

Affiliation:

1. University of Oxford

Abstract

<div class="section abstract"><div class="htmlview paragraph">Forthcoming worldwide emissions regulations will start regulating ammonia emissions from light duty vehicles. At present, most light duty vehicles are powered by gasoline spark ignition engines. Sources of ammonia emission from such engines can be in-cylinder reactions (i.e. combustion) or downstream reactions across aftertreatment devices, particularly three-way catalysts. The latter has been known to be a major source of ammonia emissions from gasoline vehicles and has been extensively investigated. The former (combustion), less so, and thus is the subject of this work. A two-zone thermodynamic spark ignition engine model with a comprehensive chemical kinetics framework (C3MechV3.3 mechanism), after being validated against experimental ammonia emissions data, is used to study ammonia formation during combustion. Reaction pathways responsible for its generation are analysed and the effects of changing the following engine operational and combustion parameters are explored: engine load, start of combustion, combustion duration, fuel-air equivalence ratio, and exhaust gas recirculation fraction.</div><div class="htmlview paragraph">Ammonia production was found to be slower than that of other major pollutant species - starting late during the heat release stage, peaking around the time when the cylinder pressures and temperatures were at their highest, and having a late, prolonged production stage after the end of heat release. Ammonia concentrations did not ‘freeze’ until late into the expansion process. Initial ammonia production was driven by three body elementary reactions involving hydrogen radicals produced from the fuel oxidation/reduction, and the late-stage production was dominated by H<sub>2</sub>O reactions with amino radicals. The net effect of these production pathways on ammonia emissions in response to changes in engine operation was non-monotonic and depended on the dominant pathway at the particular thermal conditions. However, overall trends suggested that emissions increased when engine load increased, combustion duration shortened, combustion timing advanced, fuel-air mixture became richer and exhaust gas recirculation fraction decreased.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3