Acoustic and Aerodynamic Performances of One Phononic Crystal Duct with Periodic Mufflers

Author:

Liu Panxue,Zuo Shuguang,Wu Xudong,Yin Bin,Li Shanran

Abstract

<div class="section abstract"><div class="htmlview paragraph">The acoustic muffler is one of the practical solutions to reduce the noise in ducts. The acoustic and aerodynamic performances are two critical indices of one muffler for the air intake system of a hydrogen fuel cell electric vehicle (FCEV). In this study, the concept of phononic crystal is applied to design the muffler to obtain superior acoustic performance. One duct with periodic and compact resonator-type mufflers is designed for broadband noise attenuation. The two-dimensional (2D) transfer matrix method and bandgap theory are employed to calculate the transmission loss (TL) and acoustic bandgap. It is numerically and theoretically demonstrated that broadband noise attenuation could be acquired from 500Hz to 3500Hz. Afterwards, the three-dimensional (3D) computational fluid dynamics (CFD) approach is applied to predict the pressure distribution. The results indicate that the proposed hybrid muffler and the phononic crystal duct possess low pressure loss values. Furthermore, the influence of inlet flow velocity and air temperature on the transmission loss and pressure drop are investigated through a systematic study. The two factors primarily work on sound attenuation in the high-frequency range. The increase of the inlet flow velocity might cause the TL amplitude to decrease around the peaks, while the enhancement of the inlet air temperature might make the TL curve move towards the high-frequency domain. It shows that acoustic resonator-type mufflers are conducive to broad noise attenuation with the low-pressure loss and a compact structure. It provides one avenue to control the noise in the duct.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3