Research on Air Mass Flow and Pressure Control Method for the Multi-Stack Fuel Cell System Based on Model Predictive Control

Author:

Xie Zhengchun1,Gao Jianhua2,Zhou Su3

Affiliation:

1. Tongji University, School of Automotive Studies

2. Tongji University

3. Shanghai Zhongqiao Vocational and Technical University

Abstract

<div class="section abstract"><div class="htmlview paragraph">The multi-stack fuel cell system (MFCS) has the advantages of higher efficiency, stronger robustness and longer life, and could be widely used in high-power application scenarios such as automobiles, airplanes, trains, and ships. The appropriate air mass flow and air pressure have a crucial impact on the output power performance indicators of the MFCS. Considering that the designed integrated air supply system for the MFCS has significant gas supply hysteresis and strong coupling between the inlet air mass flow and air pressure of each stack, this paper identifies multiple steady-state operating points of the fuel cell system to obtain corresponding linear predictive models and establishes corresponding predictive control algorithms. The Model Predictive Control (MPC) algorithms are switched in real-time based on the current load throughout the entire C-WTVC (China World Transient Vehicle Cycle) working condition. The simulation results show that the designed MPC algorithm can control all inlet air flow and air pressure of the MFCS (20kW/70kW/120kW) within the error range of ± 2% of the expected target values, which is significantly better than the PID control algorithm.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3