Multi-Objective Bayesian Optimization Supported by Deep Gaussian Processes

Author:

Valladares Homero,Tovar Andres

Abstract

<div class="section abstract"><div class="htmlview paragraph">A common scenario in engineering design is the evaluation of expensive black-box functions: simulation codes or physical experiments that require long evaluation times and/or significant resources, which results in lengthy and costly design cycles. In the last years, Bayesian optimization has emerged as an efficient alternative to solve expensive black-box function design problems. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition functions that drives the design process. Successful Bayesian optimization strategies are characterized by accurate surrogate models and well-balanced acquisition functions. The Gaussian process (GP) regression model is arguably the most popular surrogate model in Bayesian optimization due to its flexibility and mathematical tractability. GP regression models are defined by two elements: the mean and covariance functions. In some modeling scenarios, the prescription of proper mean and covariance functions can be a difficult task, e.g., when modeling non-stationary functions and heteroscedastic noise. Motivated by recent advancements in the deep learning community, this study explores the implementation of deep Gaussian processes (DGPs) as surrogate models for Bayesian optimization in order to build flexible predictive models from simple mean and covariance functions. The proposed methodology employs DGPs as the surrogate models and the Euclidean-based expected improvement as the acquisition function. This approach is compared with a strategy that employs GP regression models. These methodologies solve two analytical problems and one engineering problem: the design of sandwich composite armors for blast mitigation. The analytical problems involve non-convex and segmented Pareto fronts. The engineering problem involves expensive finite element simulations, three design variables, and two expensive black-box function objectives. The results show that the architecture of the DGP model plays an important role in the performance of the optimization approach. If the DGP architecture is adequate, the implementation of DGPs produces satisfactory results; otherwise, the use of GP regression models is preferable.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3