Data-driven Roughness Estimation for Glaze Ice Accretion Simulation

Author:

Ignatowicz Kevin,Morency François,Beaugendre Héloïse

Abstract

<div class="section abstract"><div class="htmlview paragraph">In-flight ice accretion on aircraft is a major weather-related threat. Industries use both experimental investigations in icing conditions and ice accretion solvers based on computational fluid dynamics (CFD) for aircraft development. An ice accretion solver couples airflow over the geometry, water droplets impingement, and phase change to compute the ice accretion. Such a solver usually relies on a two-equation model: a mass balance and an energy balance. Past studies highlighted the importance of the roughness-sensitive convective heat loss for energy balance. Uncertainties persist in the CFD models given the complexity of the ice accretion phenomenon, which usually mixes solid ice with liquid runback water (glaze ice). A major uncertainty is related to the surface roughness pattern, which is difficult to measure in experiments. The calibration of the roughness pattern for a CFD test case was seldom investigated in literature. Among the available calibration tools, the Bayesian calibration constitutes a powerful data-driven approach suitable for roughness pattern estimation. The objective of the paper is to set up a methodology for the roughness pattern calibration on an airfoil in glaze ice conditions. Specifically, this methodology determines the roughness pattern needed to minimize the root mean square error between the numerical and experimental accretions. First, an ice accretion solver implemented in SU2 CFD generates a roughness-sensitive ice shape database. Second, a Polynomial Chaos Expansion (PCE) metamodel replaces the database. Finally, a Bayesian inversion is performed on the metamodel to determine the roughness pattern producing a realistic ice shape. The fidelity of an ice shape prediction is measured with a root mean square (RMS) error on the iced portion of the airfoil. Such methodology produces promising results, giving an accretion with a RMS error of less than 0.4% of the chord length compared to the experimental accretion thickness.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3