Combustion Characteristics of Iso-Octane/Hydrogen Flames under T and P Effects up to near Flammability Limits

Author:

Akram M. Zuhaib,Aziz Muhammad,Ma Fanhua,Deng Yangbo,Akram M. Waqar,Akhtar Ali

Abstract

<div class="section abstract"><div class="htmlview paragraph">Lean combustion is an approach to achieving higher thermal efficiency for spark ignition engines. However, it faces low burning velocity and unstable combustion problems near the lean flammability limits region. The current work is attempting to investigate the combustion characteristics of iso-octane flame with 0% and 30% H<sub>2</sub> up to near lean limits (λ = 1.7) at 100-300 kPa and 393-453 K. The flame appeared spherically by 37 mJ spark energy at λ = 0.8-1.2, whereas the ultra-lean mixtures, λ ≥ 1.3, ignited at 3000 mJ under wrinkles and buoyancy effects. The impact of initial pressure and temperature on the lean mixture was stronger than the stoichiometric mixture regarding flame radius and diffusional-thermal instability. The buoyancy appeared at the highest burning velocity of 27.41 cm/s. The buoyancy region extended from λ = 1.5 to λ = 1.3 at 393 K, λ = 1.6 to λ= 1.4 at 423 K and λ = 1.7 to λ = 1.5 at 453 K with an increase in initial pressure (higher pressure, more λ under buoyancy effect), but initial temperature decreased the region from λ= 1.5 to λ = 1.7 at 100 kPa, λ = 1.4 to λ = 1.6 at 200 kPa and λ = 1.3 to λ = 1.5 at 300 kPa. OH mole fraction &lt;7.6642×10<sup>-3</sup> for H<sub>2</sub> = 0% and &lt;7.7765×10<sup>-3</sup> for H<sub>2</sub> = 30% required 3000 mJ for ignition at 393 K and 100 kPa, and buoyancy appeared at ≤4.8788×10<sup>-3</sup> for H<sub>2</sub> = 0% and ≤4.9547×10<sup>-3</sup> for H<sub>2</sub> = 30%.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3