Improvements of Thermal and Combustion Efficiencies by Modifying a Piston Geometry in a Diesel/Natural Gas RCCI Engine

Author:

Kim Hyunsoo,Kim Wooyeong,Lee Sanguk,Bae Choongsik

Abstract

<div class="section abstract"><div class="htmlview paragraph">To meet the target of the CO2 regulations, it is mandatory to replace high-carbon fossil fuels with low-carbon fuels. Diesel/Natural Gas (NG) reactivity-controlled compression ignition (RCCI) can reduce CO2 emission, which stratifies two types of fuels with different reactivity. And also, RCCI produces less NOx and particulate matter emissions by reducing the in-cylinder temperature. However, RCCI must still be enhanced in terms of the thermal and combustion efficiencies at low and medium loads. In this work, a modified piston geometry was applied to improve the RCCI combustion. The piston geometry was designed to minimize heat loss and reduce flame quenching in an RCCI engine. Experiments were conducted using a single-cylinder engine with a displacement volume of 1,000 cc. Diesel was directly injected into the cylinder, and NG was fed through the intake port. Two different engine loads were selected to represent the low and medium loads for the operation of the engine, i.e., 4.3 bar indicated mean effective pressure (IMEP) and 7.5 bar IMEP, respectively. According to the experimental results, the combustion efficiency and thermal efficiency of the modified piston were improved by up to 0.8% and 1.0%, respectively. Energy balance analysis showed that the heat transfer loss decreased by 1.1% owing to the minimal surface area of the piston. Therefore, the thermal efficiency improved. In addition, the combustion efficiency was improved because a large squish height and a small squish distance enabled the flame to reach the crevice area, which had poor conditions for flame maintenance. Heat-loss management using an modified piston geometry can contribute to the reduction in CO<sub>2</sub> emissions in RCCI engines.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3