Utilizing Speed Information Forecast in Energy Optimization of an Electric Vehicle with Adaptive Cruise Controller

Author:

Shahram Shahriar,Pourmohammadi Fallah Yaser

Abstract

<div class="section abstract"><div class="htmlview paragraph">The efficiency in energy consumption of an electric vehicle (EV) has significant value to both vehicle manufacturers and vehicle owners. Such efficiency will directly impact the cost of energy and vehicle range while relieving the stringent requirements on the DC motor and battery specs. Nowadays, with the development of advanced driver assistance systems (ADAS), such as adaptive cruise control (ACC) or cooperative adaptive cruise control (CACC), drivers enjoy a much safer driving experience. ADAS capabilities in sensory, computing and communication can be leveraged in EVs for the purpose of optimizing energy consumption.</div><div class="htmlview paragraph">This paper introduces an energy-optimized ACC platform, which utilizes a forecast of the speed profile of the host vehicle in a short (few seconds) horizon. Such speed information can be available through ADAS or similar systems. This paper focuses on optimization in longitudinal tracks. We consider ten different drive-cycles in several driving scenarios, such as highways, urban areas, and test tracks with multiple stops. We study the average energy consumption and performance in all the scenarios through simulation experiments. Our results show significant improvement in the overall energy consumption in a drive-cycle compared with a baseline vehicle that only uses ACC.</div><div class="htmlview paragraph">We can optimize the energy consumption by 2.30% on average in a random driving scenario (Highway, Urban area, or test tracks with multiple stops) utilizing the proposed method compared to only using ACC.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3