Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine

Author:

Bhatt Ankur1,Gandolfo John1,Vedpathak Kunal1,Jiang Chen2,Jordan Eric2,Lawler Benjamin1,Gainey Brian1

Affiliation:

1. Clemson University

2. Solution Spray Technologies LLC

Abstract

<div class="section abstract"><div class="htmlview paragraph">Thermal barrier coatings (TBCs) have long been studied as a potential pathway to achieve higher thermal efficiency in spark ignition engines. Researchers have studied coatings with different thicknesses and thermophysical properties to counteract the volumetric efficiency penalty associated with TBCs in spark ignition. To achieve an efficiency benefit with minimal charge heating during the intake stroke, low thermal inertia coatings characterized by their larger temperature swings are required. To study the impact of low thermal inertia coatings in spark ignition, coatings were applied to the cylinder head, piston crown, intake and exhaust valve faces, and intake and exhaust valve backsides. Tier III EEE E10 certification gasoline was used to keep the experiments relevant to the present on-road vehicles. This study is aimed at analyzing durability of the coatings as well as efficiency and emissions improvements. Thus, a 100-hr. durability test was conducted to assess the durability of the coatings. Pseudo-cold start testing was also compared between the coatings and metal baseline to investigate any benefits pertaining to emissions reduction during cold starts. These experimental results show that low thermal inertia coatings can be developed for spark ignition engines that survive a 100-hr. durability test, though there is no significant change in steady state engine performance with the application of these coatings. However, there was a substantial reduction in particulate matter and unburned hydrocarbon emissions during pseudo-cold start testing.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3