Experimental and Computational Study of Auto-ignition in the New Prototype Engine with Focusing Compression due to Supermulti-Jets Colliding

Author:

Kobayashi Tomotaka,Naitoh Ken,Migita Aro,Murata Kohei,Nakagawa Ryuki,Matsumura Sato,Ito Daiki,Sato Riku,Toba Yuta,Okada Daiki

Abstract

<div class="section abstract"><div class="htmlview paragraph">We have proposed a new compressive combustion principle leading to the auto-ignition of fuel by focusing compression due to the collision of the pulsed supermulti-jets. This principle has the potential of nearly-complete air insulation due to encasing burned gas around the center of the combustion chamber and a high compression ratio around the chamber center while suppressing vibration and noise levels. We have developed the first prototype engine having a very small combustion chamber of a diameter of 18 mm and also 14 side passages for the supermulti-jets colliding at the chamber center. Combustion experimental results indicating air insulation effect and high thrust over 100 N were obtained as basic data for various types of applications, including automobiles and aerospace usage such as for rockets. However, it was found that higher compression due to more jets is necessary to get stabler combustion. Therefore, by using a metal 3D printer, we have developed the second engine with 24 side passages of gas jets colliding, while performing direct injection of liquid fuel at injection pressure over 5 MPa into the combustion chamber. In our previous report, the experiment without combustion and its computational simulation show that the second engine enables a higher compression ratio than that of the first prototype engine. In this research, we conduct fundamental combustion experiments using the second engine with a direct injection system, purposing to achieve stable multi-cycle combustion with auto-ignition of the fuel by focusing compression due to the collision of supermulti-jets. As a result, a stabler occurrence of combustion is confirmed for the second engine. Experimental data of wall pressure obtained also indicate that auto-ignition occurs due to collision of the supermulti-jets while showing a possibility of higher thrust over 300 N. Furthermore, we qualitatively perform computations of reacting flows for the second engine, while showing liquid fuel spray atomized strongly by the gas jets.</div></div>

Publisher

SAE International

Reference23 articles.

1. Sutton , G.P. and Biblarz , O. Rocket Propulsion Elements 9th Nashville, TN John Wiley & Sons 2016

2. Nakajima , Y. and Muranaka , S. Automobile Gasoline Engines Tokyo Sankaido 1999

3. Naitoh , K. , Kasahara , J. , Sato , T. , Taguchi , H. et al 2019

4. Naitoh , K. 2011

5. Naitoh , K. 2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3