Research on Dynamic Leak Detection of Automobile Fuel System

Author:

Dai Chao,He Ren

Abstract

<div class="section abstract"><div class="htmlview paragraph">In allusion to the dynamic leak phenomenon caused by the fuel sloshing in the dynamic driving process of vehicle, the dynamic leak detection method was proposed based on the analysis of the dynamic leak mechanism and influencing factors. The six degree of freedom platform was used to simulate the gesture change of fuel tank during driving process. The influence of fuel tank operating conditions and different design styles on dynamic leak were mainly studied. Fiber-optic gyroscope was used to acquire the operating conditions of the fuel tank during driving process in five regions of China: Wuxi Mountain in Anhui, Hongjing Road in Beijing, Jing’anyi in Yunnan, Wuzhi Mountain in Hainan, Gele Mountain in Chongqing. Signal acquired by fiber-optic gyroscope includes the acceleration of the vehicle in the three directions of forward and backward, left and right, up and down as well as the rotation angles around these three directions. The displacement signal after integral reconstruction and angle signal jointly constitutes the operating conditions of fuel tank in different regions. As a comparison, South Mountain operating condition in the United States was also used for analysis. Small type, flat type, L type, saddle type and longitudinal strip type fuel tanks were selected as research objects. The six degree of freedom platform was used to simulate the gesture change of fuel tank during driving process. The result shows that the operating condition of South Mountain in the United States is quite different from those of five regions in China. Among the fuel tank operating conditions in China, the total dynamic leak amount of Wuxi Mountain operating condition in Anhui is the largest, and the leak rate result shows that L type fuel tanks are more prone to dynamic leak. Finally, according to the test results, the best dynamic leak detection operating conditions for fuel tanks with different design styles are proposed.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3