Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models

Author:

Wright Stephen,Ravikumar Avinash,Redmond Laura,Lawler Benjamin,Castanier Matthew,Gingrich Eric,Tess Michael

Abstract

<div class="section abstract"><div class="htmlview paragraph">Fatigue analysis of pistons is reliant on an accurate representation of the high temperatures to which they are exposed. It can be difficult to represent this accurately, because instrumented tests to validate piston thermal models typically include only measurements near the piston crown and there are many unknown backside heat transfer coefficients (HTCs). Previously, a methodology was proposed to aid in the estimation of HTCs for backside convection boundary conditions of a stratified charge compression ignition (SCCI) piston. This methodology relies on Bayesian inference of backside HTC using a co-simulation between computational fluid dynamics (CFD) and finite element analysis (FEA) solvers. Although this methodology primarily utilizes the more computationally efficient FEA model for the iterations in the calibration, this can still be a computationally expensive process. In this paper, several data reduction methods, such as principal component analysis, data clustering and resampling, sensor reduction, and uniform bin sampling are investigated to improve computation time while minimizing reduction in accuracy of the inference results. Each data reduction method is compared to a control case to determine change in accuracy and improvement in run time. Results indicate that most reduction methods were no more effective than using a smaller Latin hypercube design to inform the Gaussian process within the Bayesian inference code. Reduced error was observed for the structured sensor reduction method, indicating that further studies on the value of individual sensor locations to the overall calibration might be a viable path to reduce the computation time of the calibration methodology without compromising accuracy.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3