LIDAR Phenomenological Sensor Model: Development and Validation

Author:

Yousif Ahmed Luay Yousif1,Elsobky Mohamed2

Affiliation:

1. Valeo Detection Systems GmbH

2. Valeo

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the rapidly evolving era of software and autonomous driving systems, there is a pressing demand for extensive validation and accelerated development. This necessity arises from the need for copious amounts of data to effectively develop and train neural network algorithms, especially for autonomous vehicles equipped with sensor suites encompassing various specialized algorithms, such as object detection, classification, and tracking. To construct a robust system, sensor data fusion plays a vital role. One approach to ensure an ample supply of data is to simulate the physical behavior of sensors within a simulation framework. This methodology guarantees redundancy, robustness, and safety by fusing the raw data from each sensor in the suite, including images, polygons, and point clouds, either on a per-sensor level or on an object level. Creating a physical simulation for a sensor is an extensive and intricate task that demands substantial computational power. Alternatively, another method involves statistically and phenomenologically modeling the sensor by simulating the behavior of the perception stack. This technique enables faster-than-real-time simulation, expediting the development process. This paper aims to elucidate the development and validation of a phenomenological LIDAR sensor model, as well as its utilization in the development of sensor fusion algorithms. By leveraging this approach, researchers can effectively simulate sensor behavior, facilitate faster development cycles, and enhance algorithmic advancements in autonomous systems.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3