Valvetrain System for Exhaust Rebreathing on a Light-Duty Gasoline Compression Ignition (GCI) Engine

Author:

Sellnau Mark1,Whitney Christopher1,Shah Ashish1,Kunz Timothy2,Dinkel Mike2

Affiliation:

1. Aramco Americas

2. BorgWarner

Abstract

<div class="section abstract"><div class="htmlview paragraph">The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) are needed for transport for years to come, however, demands on fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieving demanding future efficiency and emissions targets. A key technology enabler for GCI is partially premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late, fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel engines, and this reduces aftertreatment (AT) requirements significantly.</div><div class="htmlview paragraph">Exhaust rebreathing (RB) is used for robust low-load and cold operation. This is enabled by use of 2-Step, mode switching rocker arms to allow switching between rebreathe and normal combustion modes. Exhaust rebreathing involves reinduction of hot exhaust gases into the cylinder during a second exhaust lift event during the intake stroke to help promote autoignition. The amount of exhaust rebreathing is controlled by exhaust backpressure created by the vanes on the variable nozzle turbine (VNT) turbocharger. Due to higher cycle temperatures when rebreathing, exhaust HC and CO may be significantly reduced, while combustion robustness and stability also improve. Increased charge dilution during rebreathing can also lower NOx emissions. Importantly, exhaust rebreathing significantly increases exhaust temperatures to maintain active catalysis in the AT system for ultra-low tailpipe emissions.</div><div class="htmlview paragraph">A 2-step valvetrain system was designed and developed for exhaust rebreathing on a 2.6l light-duty gasoline compression ignition engine. Tri-roller, switching rocker arms with hydraulically actuated lock pins were built for low friction. The 2-step actuation system was designed for fast response using a pulse-width-modulated oil control valve that regulated the oil pressure feeding the switching rocker arms.</div><div class="htmlview paragraph">Tests were conducted on the dynamometer demonstrating robust combustion with high exhaust temperatures and active catalysis at low load operation. Calibration mapping tests were also conducted. Overall, the tests demonstrated the simplicity and robustness of the exhaust rebreathing approach while delivering low exhaust emissions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3