Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

Author:

Zhao Xinyu1,Xiong Lu1,Zhuo Guirong1,Shu Qiang2,Zhao Xuanbai2

Affiliation:

1. Tongji University

2. Shanghai Tongyu Automotive Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions. The integrated Electro-Hydraulic Braking system (iEHB) is the current advanced brake-by-wire system, which can build brake hydraulic pressure by its motor, and independently adjusts the four wheel braking pressures through the solenoid valves. Based on the characteristics of the iEHB, a composite braking control strategy for front-wheel-driven electric vehicles is proposed, which adjusts the braking force distribution relationship dynamically. Firstly, the structure of the iEHB system and the wheel braking pressure control principle are analyzed. Secondly, a composite braking control strategy that adjusts the braking force distribution relationship based on current regenerative braking force and wheel braking pressures is designed. Finally, simulations are carried out with the proposed control strategy and the single-channel composite braking control strategy. The simulation results show that the proposed composite braking control strategy can improve the braking efficiency of the driven wheels and improve the energy recovery rate.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3