An Adaptable Security by Design Approach for Ensuring a Secured Remote Monitoring Teleoperation (RMTO) of an Autonomous Vehicle

Author:

Iyieke Victormills,Bryans Jeremy,Robinson Tom,Kosmas Odysseas,Shipman Alastair,Jadidbonab Hesamaldin

Abstract

<div class="section abstract"><div class="htmlview paragraph">Remote Monitoring and Teleoperation (RMTO) of Autonomous Vehicles (AV) is advancing rapidly in the industry. Researchers and industrial partners explore the role RMTO plays in helping AV navigate complicated situations, among many others. At the heart of this lies the problem of potential pathways and attack vectors or threat surfaces by which a malicious attack can be carried out on an RMTO and an AV. The separation of cybersecurity considerations in RMTO is barely considered, as so far, most available research and activities are mainly focused on AV. The main focus of this paper is addressing RMTO cybersecurity utilising an adaptable security-by-design approach, although security-by-design is still in the infant state within automotive cybersecurity. An adaptable security-by-design approach for RMTO covers Security Engineering Life-cycle, Logical Security Layered Concept, and Security Architecture. Based on the international automotive cybersecurity standards - ISO/SAE 21434, a Threat Analysis and Risk Assessment (TARA) with a formalisation of the highest level of threats identified from the TARA of the RMTO system is carried out, with corresponding mitigation actions as per UNECE WP29. The adaptable security-by-design approach has been then applied to a prototype RMTO system developed by an industrial partner. Finally, penetration testing has been carried out where the results verify the capability of the adoptable security-by-design to reinforce the security of the RMTO systems against some of the identified risks and threats.</div></div>

Publisher

SAE International

Reference45 articles.

1. 2022

2. Zhang , T. 2020

3. Bensoussan , S. and Parent , M. 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR’97 787 792 1997

4. Bout , M. , Pernestål , A. , Klingegård , M. , Habibovic , A. , and Böckle , M.-P. 2017

5. Feiler , J. , Hoffmann , S. , and Diermeyer , F. Concept of a Control Center for an Automated Vehicle Fleet 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020 2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relevance of ISO/SAE 21434 in Vehicular Architecture Development;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3