A Novel Methodology for the Definition of an Optimized Immersion Cooling Fluid by Means of a Lumped Electro-Thermal Battery Pack Model

Author:

Broatch Alberto,Olmeda Pablo,Margot Xandra,Agizza Luca

Abstract

<div class="section abstract"><div class="htmlview paragraph">This article proposes a novel methodology for the definition of an optimized immersion cooling fluid for lithium-ion battery applications aimed to minimize maximum temperature and temperature gradient during most critical battery operations. The battery electric behavior is predicted by a first order equivalent circuit model, whose parameters are experimentally determined. Thermal behavior is described by a nodal network, assigning to each node thermal characteristics. Hence, the electro-thermal model of a battery is coupled with a thermal management model of an immersion cooling circuit developed in MATLAB/Simulink. A first characterization of the physical properties of an optimal dielectric liquid is obtained by means of a design of experiment. The optimal values of density, thermal conductivity, kinematic viscosity, and specific heat are defined to minimize the maximum temperature and temperature gradient during a complete discharge of the battery at 2.5C. Through a statistical analysis, it is also possible to recognize which effects among those previously mentioned are statistically relevant for this analysis. With the optimized fluid, a second design of experiment is carried out to define an optimized design of the module (in terms of distance between cells, and staggered angle), in relation to the operating conditions (volumetric flow and discharge rate). Once the optimal design has been identified, a final comparative study is carried out between different fluids used in immersion cooling systems, whose characteristics have been found in the literature, to find which of the fluids analyzed comply with the maximum temperature and maximum gradient conditions set for this study.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3