Numerical Study on High-Load Performance of a Two-Stage Boosted Poppet-Valved Two-stroke Diesel Engine

Author:

Fu Xue-Qing,Zhang Yan,Ding Zhanming,Zhuang Anbang,Zhu Wei,Hou Linlin,cheng Jianghua,Zhang Shuyong

Abstract

<div class="section abstract"><div class="htmlview paragraph">Two-stroke cycle is one of the most effective methods to increase the torque and power output of a four-stroke engine due to the doubled firing frequency compared to four-stroke cycle at the same engine speed. As the two-stroke cycle lacks separate intake and exhaust strokes, the positive pressure difference between intake and exhaust ports is required to drive fresh charge into the cylinder, and is affected by intake port structures due to the different amounts of short-circuited fresh charge during scavenging process. To evaluate the effects of intake port structures on the high-load performance of a boosted poppet-valved two-stroke diesel engine, one-dimensional gas dynamic model and three-dimensional computational fluid dynamics model were established and used to predict the high-load performance of the boosted two-stroke diesel engine with top-entry intake ports, inclined side-entry intake ports, and side-entry intake ports, respectively. The results show that the engine with inclined side-entry intake ports has a much higher scavenging quality coefficient than the engine with other intake port structures. The maximum brake power of the 4.1 L four-cylinder two-stroke diesel engine equipped with a two-stage serial boosting system with a turbocharger and a downstream supercharger can reach 1.4 times that of a 5.1 L four-cylinder four-stroke diesel engine in the cases of top-entry and inclined side-entry intake ports, while that of the two-stroke engine with side-entry intake ports can only reach 1.2 times that of the four-stroke engine due to more power consumed by the supercharger resulted by large amount of short-circuited fresh charge. When the brake power of two-stroke engine is equal to 1.2 times that of the four-stroke engine, the intake pressure and mass flow rate of fresh charge are obviously decreased about 37.3% and 39.3% when intake port structure is changed from side-entry intake ports to inclined side-entry intake ports.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3