Exhaust Aftertreatment Technologies for PN Reduction of Motorcycles

Author:

Schurl Sebastian1,Bonifer Marcus2,Schmidt Stephan1,Bretterklieber Niko1,Joshi Pragati3

Affiliation:

1. Graz University of Technology

2. Heraeus Catalysts

3. Heraeus Deutschland GmbH & Co KG

Abstract

<div class="section abstract"><div class="htmlview paragraph">The objective of this experimental investigation was to analyze the effect of various exhaust gas aftertreatment technologies on particulate number emissions (PN) of an MPFI EU5 motorcycle. Specifically, three different aftertreatment strategies were compared, including a three-way-catalyst (TWC) with LS structure as the baseline, a hybrid catalyst with a wire mesh filter, and an optimized gasoline particulate filter (GPF) with three-way catalytic coating. Experimental investigations using the standard test cycle WMTC performed on a two-wheeler chassis dynamometer, while the inhouse particulate sampling system was utilized to gather information about size-dependent filtering efficiency, storage, and combustion of nanoparticles. The particulate sampling and measuring system consist of three condensation particle counters (CPCs) calibrated to three different size classes (SPN4, SPN10, SPN23). The study revealed that all three aftertreatment technologies were effective in reducing PN from the motorcycle, although the standard OEM LS honeycomb is already below the passenger car Euro 6 particle emission limits [<span class="xref">1</span>]. However, the GPF with a three-way catalytic coating showed the highest filtering efficiency with a significant decrease in PN emissions, particularly SPN10 and above, compared to the baseline. The hybrid catalyst with a wire mesh filter was also effective with a slightly better reduction in PN emissions compared to the baseline, but it had better backpressure behavior than the GPF and a significantly robust design. The reduction efficiency of the TWC was consistent with prior research. Moreover, the study highlighted the importance of considering the size distribution of particles when assessing aftertreatment strategies. The GPF and the hybrid catalyst with a wire mesh filter demonstrated high filtering efficiencies across all size classes. The TWC with LS structure was less efficient, particularly for the larger size classes, as previously reported [<span class="xref">2</span>].</div><div class="htmlview paragraph">In conclusion, this study emphasizes the need to consider both the overall reduction of PN and the size-dependent filtering efficiency of different aftertreatment strategies when assessing their effectiveness in reducing emissions from motorcycle exhaust.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3