Efficiency Enhancement and Lean Combustion Performance Improvement by Argon Power Cycle in a Methane Direct Injection Engine

Author:

Wang Chenxu1,Deng Jun1,Su Xiang1,Cui Wenyi1,Tang Yongjian1,Li Liguang1

Affiliation:

1. Tongji University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Argon Power Cycle (APC) is an innovative future potential power system for high efficiency and zero emissions, which employs an Ar-O<sub>2</sub> mixture rather than air as the working substance. However, APC hydrogen engines face the challenge of knock suppression. Compared to hydrogen, methane has a better anti-knock capacity and thus is an excellent potential fuel for APC engines. In previous studies, the methane is injected into the intake port. Nevertheless, for lean combustion, the stratified in-cylinder mixture formed by methane direct injection has superior combustion performances. Therefore, based on a methane direct injection engine at compression ratio = 9.6 and 1000 r/min, this study experimentally investigates the effects of replacing air by an Ar-O<sub>2</sub> mixture (79%Ar+21%O<sub>2</sub>) on thermal efficiencies, loads, and other combustion characteristics under different excess oxygen ratios. Meanwhile, the influences of varying the methane injection timing are studied. Results indicate that by replacing air with an Ar-O<sub>2</sub> mixture, thermal efficiencies and loads have a significant improvement, the operation boundary of excess oxygen ratio is extended from 1.73 to 2.91, the combustion duration period is shortened 3.5 - 7.0 °CA, and the cycling stability is significantly improved. For the APC, when the excess oxygen ratio is 1.34 and the methane injection timing is -130 °CA ATDC, the highest net indicated thermal efficiency of 51.1% and the gross indicated thermal efficiency of 53.1% are achieved, which are elevated by approximately 27.8% compared to the air cycle. Meanwhile, the maximum net indicated mean effective pressures of APC increases by 17.6% from 0.80 MPa to 0.68 MPa. The improvements in thermal efficiency are mainly attributed to the increase of thermal conversion efficiency. Moreover, compared to the air cycle, the higher in-cylinder temperature and pressure of APC allows for easier ignition and faster combustion, also leading to an increase in the thermal efficiency.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3