A CFD-Based Numerical Evaluation, Assessment and Optimization of Conjugate Heat Transfer for Aerodynamic Cooling of a Wheel-Hub-Motors in Micro-Mobility Vehicles

Author:

Mambazhasseri Divakaran Arun,Gkanas Evangelos,Shepherd Simon,Jewkes James,Abo-Serie Essam

Abstract

<div class="section abstract"><div class="htmlview paragraph">Micro-mobility vehicles such as electric scooters and bikes are increasingly used for urban transportation; their designs usually trade off performance and range. Addressing thermal and cooling issues in such vehicles could enhance performance, reliability, life, and range. Limited packaging space within the wheels precludes the use of complex cooling systems that would also increase the cost and complexity of these mass-produced wheel motors. The present study begins by evaluating the external aerodynamics of the scooter to characterise the airflow conditions near the rotating wheel; then, a steady-state conjugate heat transfer model of a commercially available wheel hub motor (500W) is created using commercial computational fluid dynamics (CFD) software, StarCCM+. The CAD model of the motor used for this analysis has an external rotor permanent magnet (PM) brushless DC topology. Both internal and external fluid domains are considered to evaluate the combined flow dynamics and conjugate heat transfer from the windings (heat source) to the ambient air. At the maximum speed (482rpm) of the motor, for a total power loss of 180W (η=64%), a maximum temperature of 295°C is observed in the windings. Evaluating the thermal path shows that approximately 58.1% of the total heat generated in the winding is dissipated radially via convection through the air gap, and only 3.66% through the shaft via conduction. The thermal resistance for the shaft is in the range of 22-60 K/W and the rotor components is in the range of 0-2 K/W for the operational speed range of 0-1000rpm. Taguchi’s Design of Experiment (DOE) with Design manager study has been conducted to optimize the performance of design parameters (Fins and air-vents/<i>holes</i>) in cooling the motor. Air vents and external fins on rotor–lid (rotor <i>cover</i>) has a greater effect on cooling the motor than other design parameters.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3