Reinforcement Learning Based Fast Charging of Electric Vehicle Battery Packs

Author:

Abbasi Mohammad Hossein1,Arjmandzadeh PhD Ziba2,Zhang Jiangfeng1,Xu Bin2,Krovi Venkat N3

Affiliation:

1. Clemson University

2. Univ of Oklahoma

3. Clemson Univ

Abstract

<div class="section abstract"><div class="htmlview paragraph">Range anxiety and lack of adequate access to fast charging are proving to be important impediments to electric vehicle (EV) adoption. While many techniques to fast charging EV batteries (model-based &amp; model-free) have been developed, they have focused on a single Lithium-ion cell. Extensions to battery packs are scarce, often considering simplified architectures (e.g., series-connected) for ease of modeling. Computational considerations have also restricted fast-charging simulations to small battery packs, e.g., four cells (for both series and parallel connected cells). Hence, in this paper, we pursue a model-free approach based on reinforcement learning (RL) to fast charge a large battery pack (comprising 444 cells). Each cell is characterized by an equivalent circuit model coupled with a second-order lumped thermal model to simulate the battery behavior. After training the underlying RL, the developed model will be straightforward to implement with low computational complexity. In detail, we utilize a Proximal Policy Optimization (PPO) deep RL as the training algorithm. The RL is trained in such a way that the capacity loss due to fast charging is minimized. The pack’s highest cell surface temperature is considered an RL state, along with the pack’s state of charge. Finally, in a detailed case study, the results are compared with the constant current-constant voltage (CC-CV) approach, and the outperformance of the RL-based approach is demonstrated. Our proposed PPO model charges the battery as fast as a CC-CV with a 5C constant stage while maintaining the temperature as low as a CC-CV with a 4C constant stage.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3