Vibration Characteristics and Control Algorithms for Semi-Active Suspension of Space Exploration Vehicles

Author:

Shenvi Mohit,Gorantiwar Anish,Sandu Corina,Taheri Saied

Abstract

<div class="section abstract"><div class="htmlview paragraph">Suspension systems are an integral part of land vehicles and contribute significantly to the vehicle performance in terms of its ride comfort and road holding characteristics. In the case of Space Exploration Vehicles (SEVs), the requirement of these unmanned vehicles is to rove, collect pictures and transmit data back to the earth. This is generally performed with the help of exteroceptive, and proprioceptive sensors mounted on the main chassis of the SEV. The design of various components of such vehicles is dictated by the assumption of extreme terrain and environmental conditions that it might face. The Mars Exploration Rovers (MERs) have incorporated the use of the “Rocker-Bogie” mechanism for the suspension system which provides relative stability to the MER for various maneuvers. In this work, the “Rocker-Bogie” mechanism is modeled and simulated as a planar kinematic model using parameters of the Perseverance rover. It is found that the Rocker-Bogie tends to nullify the effects of uneven terrain by maintaining the chassis at a relatively fixed location with respect to the ground reference frame. Further, an attempt is made to replace the mechanism with a passive and semi-active suspension module at four corner wheels to study the effects that the semi-active suspension would have on the chassis dynamics of the MER. Lastly, a comparative analysis of the vertical acceleration of the chassis using different suspensions was performed. This concluded that the rocker-bogie mechanism does help to stabilize the chassis dynamic behavior to a greater extent. Future work could include an attempt to utilize the rocker-bogie chassis dynamics as the ideal condition to develop control strategies that can improve the chassis dynamics if individual semi-active suspension systems were employed.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3