UAV Icing: 3D Simulations of Propeller Icing Effects and Anti-Icing Heat Loads

Author:

Müller Nicolas Carlo,Hann Richard

Abstract

<div class="section abstract"><div class="htmlview paragraph">In-flight atmospheric icing is a significant threat to the use of unmanned aerial vehicles (UAVs) in adverse weather. The propeller of the UAV is especially sensitive to icing conditions, as it accumulates ice at a faster rate than the wings of the UAVs. Ice protection systems can be developed to counteract the danger of icing on the propeller of UAVs. In this study, the influence of different meteorological conditions on a propeller of a UAV is analyzed for a UAV with a wingspan of a few meters. The ice accretion and the performance degradation and the required anti-icing heat fluxes have been calculated using numerical methods with ANSYS FENSAP-ICE. This analysis has been used to evaluate the critical conditions for the operation of a UAV in icing conditions and the design of a thermal IPS system for a propeller. The highest ice mass has been found at a temperature of −10 °C and an MVD of 20 μm in intermittent maximum icing conditions. The performance degradation has been the highest at lower temperatures of −15 °C in intermittent and at −5 °C in continuous maximum icing conditions. For the design of an IPS, the conditions at the lowest design temperature and the smallest median volumetric diameter (MVD) have been identified as critical points. The most important driver for the required IPS loads on the propeller is the outside temperature, followed by the liquid water content of the cloud. The MVD is important for the distribution of the liquid water content. Here, the highest heat flux required for anti-icing has been computed. The second critical design point is the highest temperature, at an MVD of 40 μm. At this condition, the heat flux is the lowest. This analysis is the basis for the development of electro-thermal IPS for use in UAVs. This paper expands previous research to cover the effect of icing on a propeller of a UAV in a wide range of icing conditions and explains the influence of those conditions on an IPS design.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3