Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning

Author:

Hyncik Ludek,Talimian Abbas,Vychytil Jan,Kleindienst Jan,Gharbi Slim,Ziazopoulos Pantelis

Abstract

<div class="section abstract"><div class="htmlview paragraph">Human-driven vehicles are going to be replaced by highly automated vehicles as one of the future mobility trends. Even though highly automated vehicles’ active safety systems can protect against vehicle-to-vehicle accidents, the traffic mix between human-driven vehicles and highly automated vehicles is still a potential source of vehicle collisions. Additionally, occupants in highly automated vehicles will be passengers not necessarily dealing with driving anymore, so there will be a considerable number of non-standard seating configurations. Those configurations are not able to be assessed for safety by hardware testing due to their number, variability and complexity. The objective of the paper is the development of a fast virtual approach to identify the passengers’ injury risk in non-standard seating configurations under multi-directional impact scenarios and severity. We deploy the concept of surrogate modeling, where we introduce a digital twin for the expected automated vehicle interiors. Non-standard seating configurations are represented by a simplified model of four seats located in the vehicle. These seats are occupied by a previously developed scalable human body model representing passengers of variable anthropometry. Thanks to the vehicle interior simplification and the hybrid human body model, thousands of simulations describing the impacts identified can be run. Based on the numerical simulations describing impact scenarios, a fast and lean artificial intelligence (AI) model actively learns a digital twin to approximate injury risk predictions for a huge number of possible crash scenarios fast. An impact scenario concerns a seating configuration occupied by up to 4 passengers (a seat can be empty) of variable height, weight, age and gender and crash direction and severity (velocity). Behind AI, the machine learning method uses supervised classifiers that are trained to predict injury severity based on the given input. There are 8 trained classifiers per passenger, each one for a body segment, where multi (predicting 4 injury severity levels) and binary (predicting injury or non-injury levels) classifications are compared. The machine learning accuracy is compared by the Mattheus correlation coefficient, where the presented digital twin AI approach reasonably approximates the numerical solution.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3