Development of a Multibody Dynamic Model of a Seated Occupant to Evaluate More Realistic ISO-Standard Motion Sickness Dose Value

Author:

Balci İbrahim,Kirli Ahmet

Abstract

<div class="section abstract"><div class="htmlview paragraph">It is estimated that the share of autonomous vehicles in the market will reach an important point between 2050s and 2060s. Some major benefits of autonomy in ground vehicles can be regarded as reducing traffic, saving fuel and reducing emissions. Accordingly, it is anticipated that autonomous vehicles (AVs) will prevent driver error from happening, which is the primary cause of 90% of traffic accidents. However, it is a prerequisite that the AVs are accepted by the public, and be used regularly in daily life. AVs obliges everyone to be a passenger, thereby occupants will lose authority on the vehicle and have to deal with non-driving tasks during an automated ride. This will increase the lack of situational awareness, leading occupants to be more sensitive to motion sickness, where the major reasons of motion sickness are conflict between vestibular and visual senses, lack of control, unable to predict the direction of movement. Increase in motion sickness reduces comfort and can adversely affect people's attitude towards AVs. In this study, a Simscape Multibody dynamic model is developed based on a 6 DOF biodynamics model including the vertical and fore-aft motion of the whole body. The multibody model is then integrated with vestibular system dynamics to evaluate the ISO2631-1 standard motion sickness dose value (MSDV). This study aims to develop a realistic multibody simulation model to be used in comfort analyses of AVs in terms of motion sickness. This paper also demonstrates the impact of using biodynamics models in evaluating motion sickness for simulation environment. Results are quantified by using Simulink Vehicle Dynamics Blockset by comparing MSDV with and without the multibody model for several case scenarios (i.e. double lane change test, constant radius, increasing steer).</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3