Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

Author:

Baker Chad Allan,Moniot Matthew,Borlaug Brennan,Lustbader Jason,Akhtar Saad,Jehlik Forrest,Agnew Scott,Lee Jason,Lee Insu,Ha Jinho

Abstract

<div class="section abstract"><div class="htmlview paragraph">Some CO<sub>2</sub>-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls. Validation of component thermal models and engine efficiency ensured accurate thermal dynamics, fuel consumption, and two-layer benefit. The real-world benefit of the two-layer technology was calculated by simulating the validated powertrain model across a representative test matrix comparing performance with and without the two-layer system. Simulation across the test matrix revealed a real-world representative benefit of 0.0835%. Analysis of test matrix results at the regional level revealed the most benefit in cold climates and rural regions. Mean results across cycle length sensitivity simulations revealed a larger real-world benefit of 0.0872%. These benefit values can be considered a more accurate assessment of real-world technology performance. Future work is planned to explore the requisite number of drive cycles to ensure the full technology benefit is captured.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3