Operation of a Natural Gas Direct Injection Compression Ignition Single Cylinder Research Engine

Author:

White Tyler,Eggart Brian,Naber Jeffrey,Turcios Marco,Singh Ashish,Munshi Sandeep

Abstract

<div class="section abstract"><div class="htmlview paragraph">The medium and heavy-duty powertrain industry trend is to reduce reliance on diesel fuel and is aligned with continued efforts of achieving ultra-low emissions and high brake efficiencies. Compression Ignition (CI) of late cycle Directly Injected (DI) Natural Gas (NG) shows the potential to match diesel performance in terms of brake efficiency and power density, with the benefit of utilizing a lower carbon content fuel. A primary challenge is to achieve stable ignition of directly injected NG over a wide engine speed and load range without the need for a separate ignition source. This project aims to demonstrate the CI of DI NG through experimental studies with a Single Cylinder Research Engine (SCRE), leading to the development of a mono-fueled NG engine with equivalent performance to that of current diesel technology, 25% lower CO<sub>2</sub> emissions, and low engine out methane emissions. The SCRE has a single cylinder displacement of 2.5L and utilizes a high-pressure direct-injection gaseous injector with pilot gas injection capabilities. This is combined with technologies targeting the end-of-compression temperatures required to achieve the autoignition of late cycle injection of NG. These technologies include increased compression ratio and auxiliary charge air heating. The SCRE experimental studies have been successful in demonstrating robust ignition of DI NG, producing high efficiency, stable operation with acceptable pressure rise rates, and good combustion stability. The technology offers direct control of combustion phasing and heat release rate through injection strategy, including pilot and main injection timing and injection pressure. Studies have been conducted to expand the operating range of the SCRE and characterize the interactions of response variables to achieve high efficiency and low emissions operation at increased engine loads, with a final target of 24 bar BMEP.</div></div>

Publisher

SAE International

Reference19 articles.

1. https://dieselnet.com/standards/us/hd.php

2. McTaggart-Cowan , G. , Mann , K. , Wu , N. , and Munshi , S. An Efficient Direct-Injection of Natural Gas Engine for Heavy Duty Vehicles SAE Technical Paper 2014-01-1332 2014 https://doi.org/10.4271/2014-01-1332

3. https://afdc.energy.gov/fuels/natural_gas_basics.html

4. https://www.energy.gov/natural-gas

5. https://afdc.energy.gov/fuels/prices.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3