Development of an Altitude Evaporation Model for Icing Tunnel Control

Author:

Davison Craig

Abstract

<div class="section abstract"><div class="htmlview paragraph">In 2017 the National Research Council of Canada developed an evaporation model for controlling engine icing tunnels in real time. The model included simplifications to allow it to update the control system once per second, including the assumption of sea level pressure in some calculations. Recently the engine icing system was required in an altitude facility requiring operation down to static temperatures of -40°C, and up to an altitude of 9.1 km (30 kft) or 30 kPa. To accommodate the larger temperature and pressure range the model was modified by removing the assumption of sea level operation and expanding the temperature range. In addition, due to the higher concentration of water vapor that can be held by the atmosphere at lower pressures, the significance of the effect of humidity on the air properties and the effect on the model was investigated. The effect of humidity on the density, specific heat, viscosity, thermal conductivity and Prandtl number of air compared to assuming dry air was examined. The effect of humidity on the individual thermodynamic and transport properties could be significant but the overall effect on the liquid water content calculated by the model to be delivered to the engine was not. The error in using the property correlations from the original model over the expanded temperature range was found to be minimal. Finally, the numerical technique was modified to decrease the solution time under extreme operating conditions. This modification increased the solution time in some standard conditions but still kept it within the required time. The new model was compared to the previous model under sea level conditions and found to give practically the same results within the expected error allowed by the solver.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3