Individualized SAC Car-Following Strategies Considering the Characteristics of the Driver

Author:

Wu Mingzhi1,Yu Qin2,Hu Yiming1,Liu Xuegao3

Affiliation:

1. Nanchang Automotive Institute of Intelligence & New Ener

2. Jiangxi Isuzu Motors Co, Ltd.

3. Southwest University, College of Artificial Intelligent

Abstract

<div class="section abstract"><div class="htmlview paragraph">Increasing the degree of individuality of the autopilot and adapting it to the habits of drivers with different driving styles will help to increase occupant acceptance of the autopilot function. Inspired by the Twin Delayed Deep Deterministic policy gradient algorithm(TD3) algorithm to increase action spontaneity, this paper proposes a Soft Actor-Critic(SAC) based personalized following control strategy to increase the degree of strategy personalization through driver data. In order to obtain real driver data, this paper collected driving data based on driver-in-the-loop experiments conducted on a simulated driving platform, and selected data from three drivers with distinctive driving characteristics for model training. A continuous action space model was developed by vehicle following kinematics. A temporal Gate Recurrent Unit (GRU) based reference model is trained to receive temporal state signals and output acceleration actions according to the current state. In this paper, we introduce temporal imitation learning into the SAC algorithm by weighting the average of the output actions of the reference model and the output of the SAC strategy network to improve the personalization of the decision algorithm. The reward function has been designed to take into account the safety, comfort and pleasant nature of the following process. Simulation results based on the CARLA simulator show that the personalised following control strategy proposed in this paper is able to learn different driver characteristics in terms of overall style, while ensuring the stability and safety of the vehicle autonomous following process.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3