Impact Ice Microstructure Segmentation Using Transfer Learned Model

Author:

Chen Ru-Ching,Stuckner Joshua,Giuffre Christopher

Abstract

<div class="section abstract"><div class="htmlview paragraph">A process of using machine learning to segment impact ice microstructure is presented and analyzed. The microstructure of impact ice has been shown to correlate with the adhesion strength of ice. Machine vision techniques are explored as a method of decreasing analysis time. The segmentation was conducted with the goal of obtaining average grain size estimations. The model was trained on a set of micrographs of impact ice grown at NASA Glenn’s Icing Research Tunnel. The model leveraged a model pre-trained on a large set of micrographs of various materials as a starting point. Post-processing of the segmented images was done to connect broken boundaries. An automatic method of determining grain size following an ASTM standard was implemented. Segmentation results using different training sets as well as different encoder and decoder pairs are presented. Calculated sizes are compared to manual grain size measurement methods. Results show promise in accuracy as well as a possible improvement in repeatability and consistency. Next steps for improving the model are suggested.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3