Comparison and Feasibility Study of Hexanol/Diesel/Pongamia Biodiesel Blend on Engine Characteristics of a Common Rail Direct Injection Diesel Engine

Author:

Santhosh K.1,Shahapur Saikumar2,Kumar G.N.2,Ravikumar K.N.1,Raghavendra Reddy N.V.3

Affiliation:

1. Dayananda Sagar College of Engineering, Department of Automo

2. National Institute of Technology Karnataka, Department of Me

3. RV Institute of Technology and Management, Department of Mec

Abstract

<div class="section abstract"><div class="htmlview paragraph">In this work, the impact of hexanol/diesel/biodiesel blend on engine characteristics of a common rail direct injection (CRDI) diesel engine was studied. Biodiesel is more viscous in nature and higher cetane count, hexanol has a lower viscosity and cetane count. The drawbacks of both biodiesel and hexanol can be overcome by blending both hexanol and biodiesel with diesel fuel in the right proportion. Tests were carried out using a 4-stroke CRDI engine with two cylinders. Biodiesel and 1-hexanol were blended in a ratio of 10% each by volume with diesel and compared with B10D90 and B20D80 blends. It was noted that the addition of hexanol enhances the combustion characteristics of the engine. At 20% load H10B10D80 showed71.34 bar which is highest compared to other fuels in the test. The blends had a positive effect on emissions, there was drastic reduction in NOx was noticed, also HC and CO emission was lower than diesel emissions. The lowest CO, and HC emission is obtained for H10B10D80, which is 66%, 92% lower at 60% load compared to baseline readings. However, the blend had a slight negative effect on performance in contrast to diesel. The higher latent heat of vaporization of hexanol led to low temperature combustion contributing to the lowest NOx emissions. The combination of both hexanol and Pongamia biodiesel with diesel showed an effective reduction in greenhouse gases. Which will also reduce the dependency on fossil fuels. The lower carbon content of 1-hexanol contributes towards carbon neutrality. Overall, the hexanol and biodiesel are sustainable alternatives to the diesel fuel.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3