Experimental Study on Ammonia/OME Combustion in a Dual-Fuel Engine with Emphasis on Highly Diluted Intake Air Conditions

Author:

Untheim Thomas,Großmann Fabian,Tatucu-Ertel Paul,Jochem Marius,Weigand Peter,Bikas Georgios

Abstract

<div class="section abstract"><div class="htmlview paragraph">Ammonia, which is considered as an excellent hydrogen carrier, could potentially become a clean fuel for direct use in ICE.</div><div class="htmlview paragraph">An experimental setup with a strongly modified inline four-cylinder (I4) heavy duty Diesel engine was used to study different combustion modes of ammonia in ICE. The fourth cylinder of that engine was operated in a monovalent mode using either OME or Diesel fuel. Its complete exhaust stream was fed into the first cylinder of the same engine, which was operated on a dual-fuel mode by utilizing ammonia port injection and OME or Diesel pilot injection to ignite the mixture. The fourth cylinder of the I4 heavy duty engine can be operated at conditions between idle and full load and at different stoichiometries (λ) to impact both the temperature and the oxygen concentration at the exhaust of that cylinder. Since the first cylinder is fed by the complete exhaust stream of the fourth, the intake conditions of the first cylinder can be controlled appropriately and various ammonia combustion modes can be realized.</div><div class="htmlview paragraph">Emissions measurements at the intake and the exhaust of the first cylinder at different speeds and loads show the impact of the different combustion modes, especially due to temperature and oxygen content variations, on NOx and combustion efficiency. Chemical kinetics calculations have been elaborated to explain some of the main observations.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3