Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

Author:

Gallia Mariachiara,Guardone Alberto,Congedo Pietro Marco

Abstract

<div class="section abstract"><div class="htmlview paragraph">We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient. A robust optimization formulation was also considered aiming to maximize the statistical frequency of the fully evaporative operating regime for fixed power consumption. The framework is applied to a reference test case, revealing the potential to improve the evaporation efficiency of the baseline design, increasing flight safety even at non-nominal conditions. We also conducted a preliminary examination of the impact of run-back ice formations on airfoil performance during a brief ice encounter in uncertain cloud conditions to understand how the rate of ice accretion relates to an airfoil performance metric, such as the drag coefficient. The analysis found that reducing the rate of ice build-up may not necessarily diminish the detrimental effects on aerodynamic performance, except when the rate is very low. Further studies are ongoing to explore airfoil performance degradation in more detail and to reduce the optimization framework computational cost.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3