Backend-Based State-of-Charge Control as a Predictive Operating Strategy for a Serial PHEV

Author:

Böhme Maximilian,Gerdts Matthias,Trapp Christian

Abstract

<div class="section abstract"><div class="htmlview paragraph">In previous work, a serial hybrid powertrain concept with a phlegmatised ICE has been described. Drivability is to be ensured through an innovative predictive operating strategy. Battery State-of-Charge (SoC) is controlled using a backend-based prediction of energy consumption on a given route based on road map and traffic data.</div><div class="htmlview paragraph">In this paper, a spotlight is thrown on the proposed control architecture. On the top level of the controller, a Dynamic Programming algorithm finds an optimal reference trajectory for the SoC over a known route with the goal of avoiding certain Worst-Case scenarios commonly associated with the serial hybrid powertrain topology. Close adherence to the reference trajectory is ensured on a lower level through Model Predictive Control, taking into account additional factors such as battery stress. These control layers closely represent the map DATA distributed on the on-board bus network of state-of-the-art road vehicles under the current ADASIS standard. The necessary input data for the proposed controller is therefore available at no extra cost or engineering effort to OEMs. A simulation framework based on Matlab/Simulink and AVL CruiseM enables testing of the operating strategy using high-quality, open-source map DATA. Thus, the viability of the proposed control architecture is demonstrated in a selection of challenging driving scenarios on real-road speed and gradient profiles. It is shown that this quite basic prediction algorithm outperforms classical, non-predictive serial hybrid operating strategies in terms of drivability. Thus, systematic optimisation of the ICE towards high efficiency and low emissions is enabled, reducing requirements for transient behavior and high power density. Potential for future development, especially further improvements of efficiency and emissions behavior of the ICE through predictive thermal management, is also elucidated.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3