Experimental and Numerical Insights on Battery Venting during Thermal Runaway

Author:

Garcia Antonio,Gil Antonio,Golke Diego,Micó Carlos

Abstract

<div class="section abstract"><div class="htmlview paragraph">Lithium-ion batteries have a well-documented failure tendency under abuse conditions with a significant release of gases and heat. This failure originated from the decomposition reactions within the battery’s electrochemical components, resulting in gas generation and increased internal pressure. To optimize battery safety, it is crucial to understand their behaviors when subjected to abuse conditions. The 18650 format cell incorporates a vent mechanism within a crimped cap to relieve pressure and mitigate the risk of rupture. However, cell venting introduces additional safety concerns associated with flammable gases and liquid electrolyte that flow into the environment. Experiments were performed with two venting caps with well-known geometries to quantify key parameters in describing the external dynamic flow of battery venting and to validate a CFD model. Thus, the jet of pure CO<sub>2</sub> was measured on a dedicated experimental bench using Schlieren’s optical technique and the jet shape and penetration were calculated. The CFD model was validated by comparing the experimental results with those obtained from the CFD model. Furthermore, emissions data from two different cathode chemistries, LFP and NCA, for three distinct SOC´s were collected from the literature [<span class="xref">1</span>,<span class="xref">2</span>] and simulated using the two venting caps to obtain insights on the spatial and temporal species (CO, CH<sub>4</sub>, H<sub>2</sub>) distribution. Considering results, species distribution was more dependent on the design of the venting cap, but also on the SOC of the battery.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3