Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

Author:

Geng Pat1,Butler Aron2,Studzinski William3,Salyers John1,Jetter Jeff4

Affiliation:

1. General Motors LLC

2. US Environmental Protection Agency

3. General Motors LLC Retired

4. Consultant to Honda Development and Mfg of America LLC

Abstract

<div class="section abstract"><div class="htmlview paragraph">A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed.</div><div class="htmlview paragraph">High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed. This paper presents analysis of 159 U.S. market gasoline samples using D86 distillation and ASTM D6730 detailed hydrocarbon analysis (DHA). The samples ranged in Particulate Matter Index (PMI) from 0.925 to 2.540 or Particulate Evaluation Index (PEI) of 0.584 to 2.715. Additional analysis was performed on 80 of the samples using ASTM D7096, a chromatographic method, to generate higher resolution simulated distillation (SimDis) profiles. SimDis cutpoints (%-off values) in the range of T95 to T98 show good correlation to PMI and PEI, demonstrating that SimDis analysis can provide a useful assessment of the PM-formation tendency of market gasolines.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3