Multi-Output Physically Analyzed Neural Network for the Prediction of Tire–Road Interaction Forces

Author:

Marotta Raffaele1,Strano Salvatore1,Terzo Mario1,Tordela Ciro1

Affiliation:

1. UNINA: University of Naples Federico II, Industrial Engineering, Italy

Abstract

<div>This article introduces an innovative method for predicting tire–road interaction forces by exclusively utilizing longitudinal and lateral acceleration measurements. Given that sensors directly measuring these forces are either expensive or challenging to implement in a vehicle, this approach fills a crucial gap by leveraging readily available sensor data. Through the application of a multi-output neural network architecture, the study focuses on simultaneously predicting the longitudinal, lateral, and vertical interaction forces exerted by the rear wheels, specifically those involved in traction. Experimental validation demonstrates the efficacy of the methodology in accurately forecasting tire–road interaction forces. Additionally, a thorough analysis of the input–output relationships elucidates the intricate dynamics characterizing tire–road interactions. This research underscores the potential of neural network models to enhance predictive capabilities in vehicle dynamics, offering insights that are valuable for various applications in automotive engineering and control systems.</div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3