Auto-Ignited Combustion Control in an Engine Equipped with Multiple Boosting Devices

Author:

Kang Jun-Mo1

Affiliation:

1. General Motors Global R&D, Energy & Propulsion Systems Research Laboratory, USA

Abstract

<div>The combustion timing of auto-ignited combustion is determined by composition, temperature, and pressure of cylinder charge. Thus, for a successful auto-ignition, those key variables must be controlled within tight target ranges, which is challenging due to (i) nature of coupling between those variables, and (ii) complexity of managing multiple actuators in the engine. In this article, a control strategy that manages multiple actuators of a boosted homogeneous charge compression ignition (HCCI) engine is developed to maintain robust auto-ignited combustion. The HCCI engine being considered is equipped with multiple boosting devices including a supercharger and a turbocharger in addition to conventional actuators and sensors. Since each boosting device has its own pros and cons, harmonizing those boosting devices is crucial for successful transient operation. To address the multi-variable transient control problem, speed-gradient control methodology is applied to minimize coupling between boosting devices. Simulation results show that the control strategy overcomes turbo lag by utilizing the supercharger during transient. The controller developed is still appliable to manage multiple boosting devices with conventional engines as well as HCCI engine.</div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3