A Multiagency Long Short-Term Model Beamforming Prediction Model for Cellular Vehicle to Everything

Author:

Elangovan Vivekanandh,Xiang Weidong,Liu Sheng

Abstract

<div>Machine learning (ML) for predicting wireless channels of vehicular communications networks has attracted interest in recent years. Beamforming is a technique used to selectively transmit and receive data in a desired direction. The receiver should be capable of choosing the right beam at the right time. The usage of adaptive antenna scanning, i.e., scanning all the beams and choosing the best beam will result only in 30% accuracy, which means 70% of the data will be lost. This article studied a multiagency long short-term memory (LSTM) beamforming prediction model based on signal strength to forecast optimum beams within each beacon interval (BI) for cellular vehicle-to-everything (C-V2X) systems. The model combines the outputs of several parallel prediction models resulting in an enhanced accuracy of prediction. Simulation data validated the effectiveness of the proposed prediction model on the university campus, resulting in a 24% improvement in prediction accuracy.</div>

Publisher

SAE International

Subject

Artificial Intelligence,Computer Science Applications,Automotive Engineering,Control and Systems Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Accumulative Method to Time Series Prediction for Vehicle Communication;2023 IEEE Vehicle Power and Propulsion Conference (VPPC);2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3