An Integrated 3D CFD Simulation Methodology for the Optimization of the Mixture Preparation of 2-Stroke DI Engines

Author:

SCHMIDT Stephan,SCHOEGL Oliver,ROTHBAUER Rainer J.,EICHLSEDER Helmut,KIRCHBERGER Roland

Abstract

<div class="section abstract"><div class="htmlview paragraph">For the development of high-performance 2-stroke engines with internal mixture preparation it is essential to know about the interaction between charge motion and injection spray. With no prototypes available conceptual investigations can only render such information by using 3D CFD simulation. In this way an optimization of mixture preparation and charge motion can be achieved by varying the transfer and boost ports. To allow for the influence of these modifications on the mass balance (volumetric and trapping efficiency), the entire system of the loop-scavenged two-stroke engine has to be investigated. The state of the art calculation domain for 2-stroke 3D CFD simulation is bounded at the inlet of the crankcase (reed valve) and sometimes also at the outlet of the cylinders. The reasons lie in the so far not sufficiently reproducible components (e.g. reed valve) as well as in the reduction of calculation time. Beside the possibility of a coupled 1D and 3D simulation (SAE Paper No. <a href="http://www.sae.org/technical/papers/2005-32-0099" target="_blank">2005-32-0099</a> and SAE Paper No. <a href="http://www.sae.org/technical/papers/2006-32-0059" target="_blank">2006-32-0059</a>), it is possible to apply a methodology with adaptive boundary conditions for the evaluation of the entire engine in order to overcome these restrictions.</div><div class="htmlview paragraph">This publication presents an integrative methodology for the simulation of two-stroke engines with adaptive boundary conditions. For the calculation domain, the boundary condition values are varied in the area of the intake by using the measured characteristic curves of the reed valves during the calculation process. Detailed measurements of the reed valves as well as 1D simulation of the entire engine using measurement data of already available SI variations of the engine serve as a basis. The combustion chamber, the crankcase, the transfer-, boost and exhaust ports as well as the exhaust system can be completely reproduced in the 3D calculation zone.</div><div class="htmlview paragraph">The optimization of the mixture preparation of a high-performance two-stroke engine is exemplarily demonstrated by this method. Particular consideration is given to the influence of the intake port geometry on the charge motion in the combustion chamber and therewith on the mixture formation. Finally the results of the 3D CFD simulation are contrasted with those of the experimental engine, and an outlook on the application of this calculation method is given.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3