The Effect of Methane Addition on the Low-Temperature Oxidation Preparation and the Thermal Ignition Preparation of Dimethyl Ether Under Representative Engine In-Cylinder Thermal Conditions

Author:

Ou Juan1,Yang Ruomiao1,Yan Yuchao1,Liu Zhentao1,Liu Jinlong1

Affiliation:

1. Key Laboratory of Clean Energy and Carbon Neutrality of Zhej

Abstract

<div class="section abstract"><div class="htmlview paragraph">Dimethyl ether (DME) is a highly reactive diesel substitute that can be used as a pilot fuel to ignite low- reactivity methane (CH4) in heavy-duty engines. To optimize the efficiency and emissions of CH4/DME dual-fuel engines, it is crucial to study the fundamental combustion characteristics of DME mixed with methane. This study focuses on the influence of CH4 addition on the low-temperature oxidation (LTO) preparation stage and the thermal ignition (TI) preparation stage of DME in the two-stage ignition process, as these two stages respectively control the ignition delay of the first and second stages. The comparison is made between pure DME and a 50% CH4 and 50% DME blended fuel, operating under thermodynamic conditions representing the engine in- cylinder environment at 30 atm pressure, 650K temperature, and a stoichiometric equivalence ratio. The results show that the addition of methane hardly affects the control mechanism of the two-stage ignition of DME. Specifically, the LTO preparation stage is still promoted by the increase in OH radicals in the DME’s low-temperature oxygenation pathways to form KET, and the second stage is still controlled by the H<sub>2</sub>O<sub>2</sub> loop mechanism. The kinetic analysis also reveals that methane addition can compete for some of the OH radicals in the LTO preparation stage, which has a suppressing effect on ignition. However, in the TI preparation stage, methane can promote the loop reaction of OH→HO<sub>2</sub>→H<sub>2</sub>O<sub>2</sub>→OH and promote ignition. For the operating conditions studied here, although methane consumes a total of 7.24% prior to thermal ignition, it only consumes 0.63% of the total amount in the LTO preparation stage and 1.81% of the total amount in the TI preparation stage. This indicates that methane is mainly consumed in the LTO stage, accounting for 65% of the total methane consumption amount. It can be concluded that the kinetic effect of methane has a relatively small impact on the ignition delay of the DME, at least for the conditions investigated here. In other words, the dilution and thermal effects caused by adding methane are the main reasons for the prolonged time of LTO/TI preparation. Overall, more fundamental research is warranted to understand the role of methane in the two-stage ignition process of DME, which could facilitate the development of CH4/DME dual-fuel engines.</div></div>

Publisher

Society of Automotive Engineers of Japan

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3