Research on Super-Lean Burn Spark Ignition Engine with In-Cylinder Water Injection using Gasoline Surrogate Fuels

Author:

Nagasawa Tsuyoshi1,Ishibashi Soh1,Kosaka Hidenori1

Affiliation:

1. Tokyo Institute of Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">The combination of super-lean burn spark ignition engine (excess air ratio λ ≈ 2) and in-cylinder water injection (WI) makes it possible to achieve thermal efficiency higher than 50%. Toward future fuel diversification including carbon-neutral fuels, technologies to improve SI engine thermal efficiency applicable to various fuels are required. In this study, the effect of in-cylinder WI on SI engine performance with a compression ratio of 17 and λ = 1.85 is investigated using premium gasoline, 5 components surrogate fuels for premium gasoline (S5H), and for regular gasoline (S5R). In the case of premium gasoline and S5H, spark timing can be advanced to MBT (minimum advance for best torque) by WI and gross indicated thermal efficiency (gITE) increases to 51.2% (premium gasoline) at water/fuel weight ratio (W/F) = 57.7% and 50.8% (S5H) at W/F = 62.9%. In the case of S5R, on the other hand, a strong knock forces a large spark retard at no-water condition. Although the water injection suppresses the knock and gives spark advance, the spark timing cannot be advanced to the region where stable lean combustion can be achieved. As a result, the maximum gITE for S5R only increases to 45.1% by WI of W/F = 69.3%. These results show that the effect of thermal efficiency improvement by WI can be obtained regardless of the fuel while a fuel with high knock resistance is required to achieve compatibility with super-lean burn.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3