Machine-Learning-Accelerated Simulations for the Design of Airbag Constrained by Obstacles at Rest

Author:

Valenzuela del Rio Jose E.1,Lancashire Richard2,Chatrath Karan2,Ritmeijer Peter2,Arvanitis Elena1,Mirabella Lucia1

Affiliation:

1. Siemens Technology (United States)

2. Siemens Industry Software (Netherlands)

Abstract

<div class="section abstract"><div class="htmlview paragraph">Predicting airbag deployment geometries is an important task for airbag and vehicle designers to meet safety standards based on biomechanical injury risk functions. This prediction is also an extraordinarily complex problem given the number of disciplines and their interactions. State-of-the-art airbag deployment geometry simulations (including time history) entail large, computationally expensive numerical methods such as finite element analysis (FEA) and computational fluid dynamics (CFD), among others. This complexity results in exceptionally large simulation times, making thorough exploration of the design space prohibitive. This paper proposes new parametric simulation models which drastically accelerate airbag deployment geometry predictions while maintaining the accuracy of the airbag deployment geometry at reasonable levels; these models, called herein machine learning (ML)-accelerated models, blend physical system modes with data-driven techniques to accomplish fast predictions within a design space defined by airbag and impactor parameters. These ML-accelerated models are evaluated with virtual test cases of increasing complexity: from airbag deployments against a locked deformable obstacle to airbag deployments against free rigid obstacles; the dimension of the tested design spaces is up to six variables. ML training times are documented for completeness; thus, airbag design explorers or optimization engineers can assess the full budget for ML-accelerated approaches including training. In these test cases, the ML-accelerated simulation models run three orders of magnitude faster than the high-fidelity multi-physics methods, while accuracies are kept within reasonable levels within the design space.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3